Interpolation scheme for planar cubic G2 spline curves

نویسنده

  • Marjeta Krajnc
چکیده

In this paper a method for interpolating planar data points by cubic G splines is presented. A spline is composed of polynomial segments that interpolate two data points, tangent directions and curvatures at these points. Necessary and sufficient, purely geometric conditions for the existence of such a polynomial interpolant are derived. The obtained results are extended to the case when the derivative directions and curvatures are not prescribed as data, but are obtained by some local approximation or implied by shape requirements. As a result, the G spline is constructed entirely locally.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves

In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...

متن کامل

On Interpolation by Planar Cubic G Pythagorean-hodograph Spline Curves

In this paper, the geometric interpolation of planar data points and boundary tangent directions by a cubic G2 Pythagorean-hodograph (PH) spline curve is studied. It is shown that such an interpolant exists under some natural assumptions on the data. The construction of the spline is based upon the solution of a tridiagonal system of nonlinear equations. The asymptotic approximation order 4 is ...

متن کامل

On interpolation by Planar cubic G2 pythagorean-hodograph spline curves

In this paper, the geometric interpolation of planar data points and boundary tangent directions by a cubic G2 Pythagorean-hodograph (PH) spline curve is studied. It is shown that such an interpolant exists under some natural assumptions on the data. The construction of the spline is based upon the solution of a tridiagonal system of nonlinear equations. The asymptotic approximation order 4 is ...

متن کامل

Algorithm for Geometric

We show that the geometric Hermite interpolant can be easily calculated without solving a system of nonlinear equations. In addition we give geometric conditions for the existence and uniqueness of a solution to the interpolation problem. Finally we compare geometric Hermite interpolation with standard cubic Hermite interpolation. x1 Introduction Since parametric representations of curves are n...

متن کامل

A control polygon scheme for design of planar C2 PH quintic spline curves

A scheme to specify planar C2 Pythagorean-hodograph (PH) quintic spline curves by control polygons is proposed, in which the “ordinary” C2 cubic B-spline curve serves as a reference for the shape of the PH spline. The method facilitates intuitive and efficient constructions of open and closed PH spline curves, that typically agree closely with the corresponding cubic B-spline curves. The C2 PH ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011